Ethen\'et/IP

Ethernet-IP Communication
with I-Mark

Technical Brochure

(600] 01 7=] o) ST 2

T L= L= A PR 3
g I T N L =T = Tol T @] o} =Y ot SR 4
Class COAE: OXB5 (101) ..eeviiiiiiiirireieeeeeieeitrreeeeeeeeeeetareeeeeeeeessatarereseeeeeessbraeresesesesssssraresseeeeesnsbrsneeseeesnans 4
SEIVICES ittt e a e s bt e e s a e e s e et e s a e e e s arae e e e 5
2121 T 1V Lo] O ST U PP PRPPIN 10
EXAIVIPLES ...ttt ettt sttt et ettt b e s bt e she e s ht e e ae e et e et e e eheesae e sab e et e et e e beeabeenbeeenteeateentean 10
Setup I-Mark for EtherNet/IP COmMMUNICATIONccviiiiiieeieieciee ettt ettt et e ete e et e e e reeeetaeesareeen 12
Y A=Y o R @eT 0 4 o] 1T Y=Y T o PR 12
Step 2: Create a Layout with EtherNet/IP placeholder...........coueieviieoiiiiiiicee et 15
Step 4: Set Layout as active layout for Marking...........ooevee i e 17
Step 4: Save and download the configuration to the controller.cccveeiicieeicciee e, 18
Y Q=T 1 (= gl 1Y =T o] o] VPP 19
(001 o T UL A @oT o A o] W 2T = {1y =] PP 20
Writing Marking Data to the I-Mark Controller: ... e e 21
Establishing Communication with RSLOZIX 5000cc.ueiieiiiiiieeiiieeeecireeeeecite e e eesireeeeeeree e e esareeeseeareeeeeeareeas 23
Step 1: Create @ new RSLOZIX 5000 ProjeCT ..cccoeeeeeeiee e 23
Step 2: Connect to the PLC using RSLOZIX 5000ceeeiiuiireeiiiieeeeiiieeeeeireeeeeeireeeeesareeeeesnseeesennseessennsenas 23
STEP 3: ASSIZN IP @UUIESSESneeeiieieeee ettt e e e e e e e e e e e e e ettt e e e e e e e e e nnrtaaeeeeee e e e nbtaraaeeeeaans 24
Step 4: Verify EtherNet/IP COMMUNICATIONoooveiiiieiciie ettt ettt e e et e eveeeereeeeareesreeenns 27
Register Interface Example With RSLOZIX 5000.........ccccuiiieiiiieeeiieee et e eecite e e eeeiree e e e eare e e e esareeeeeenbaeeeeeaseeas 31
OVEBIVIBW ..ttt ettt e e et e e s e e s s s e e e s bt e e s s n et e e e n s et e e s s e e e e e s e ee e s nnreeesannreeesenrenesennrenes 31
Step 1: Programming the PLC side With RSLOZIX........uuiiiiiiiiiiiiiiiiiee ettt e e e evrane e e e e 32
Y] oI A 1= 4 o[] g 15 o - 1 o] o TR 36

www.marking-machines.net

N 4

Marking Machines

EtherNet/IP™ §
CMT's EtherNet/IP™ option interfaces with I-Mark controller and the various ODV

Common Industrial Protocol (CIP™) objects that are used. It is intended only for users
who have a working knowledge of the ODVA CIP and EtherNet/IP specifications. It is
not intended to be used to learn about EtherNet/IP networks or protocol.

This option is available when purchased with an I-Mark Machine

The I-Mark Controller supports the following EtherNet/IP Interface Object:

LINK TO SAMPLE CODE

www.marking-machines.net

Register Interface Object

Nl

lass Code: 0x65 (101)
The register interface allows access to the controller's Integer and Double Registers

through EtherNet/IP™. This provides a flexible, general-purpose interface between the
controller and EtherNet/IP that can be adapted to many different applications.
Attributes

ElClass Attributes
Elinstance Attributes

- Instance 0x01 is mapped to the controller's Integer Registers.

+ Instance 0x02 is mapped to the Double Registers.

Number | Access Name Data Description
Rule Type
0x64 Get Number of DINT Ret.urns the nymber of
[J (100) Registers registers in this set.
-—F 0x65 Get Reaister Size DINT Returns the size of each
el | (101) g register, in bytes.
' 0x66 Get Register Set Base | DINT Returns the 32-bit base
(102) Address memory address of the
register set.
0x67 Get Register Set Mutex | DINT Returns the mutex number
(103) associated with the register
set.

www.marking-machines.net

Services

EICommon Services

Service _
Code Name Description
OxOE (14) Get Returns the contents of the specified attribute.

_Attribute_Single

ElObject-Specific Services

Service

Code Name Description
0x32 (50) |Read_Single_Register |Read the contents of a single register.
SRMEE Name Description
Code P

i) _ Write the contents of a single register.
0x33 (51) | Write_Single_Register

. . Read the contents of a series of registers.

0x34 (52) | Read_Multiple_Registers g

. . . Write the contents of a series of registers.
0x35 (53) | Write_Multiple_Registers g

www.marking-machines.net

Read_Single_Register Instance Service

able: Service Parameters

Name Type | Description
Register DINT | The number of the register to be read.
Number

Table: Service Response Data

Name Type | Description
0 The operation completed successfully
Status Code | DINT Thg operation could not be performed because of invalid
register numbers.
5 Invalid service request format.
i Variable :
Register The value of the register.(t) G
Contents

www.marking-machines.net

R

Marking Machines

Write_Single Register Instance Service

Table: Service Parameters

Name Type | Description
Register DINT | The number of the register to be written.
Number

Value

New Register| Variable

The new register value to be written.

Table: Service Response Data

Name Type | Description
Status DINT |0 The operation completed successfully
Code
Name Type | Description
1 The operation could not be performed because of invalid register
numbers.

Invalid service request format.

www.marking-machines.net

;,/ - \,‘Page7

ad/ Multiple_Register Instance Service

able: Service Parameters

Name Type| Description

Start Register| DINT
Number The number of the first register to be read. Must be less than

the End Register Number.

End Register| DINT _
Number The number of the last register to be read. Must be greater

than the Start Register Number.

Table: Service Response Data

Name Type | Description
0 The operation completed successfully
” l Status Code | DINT Thg operation could not be performed because of invalid
& _) register numbers.
——— 5 Invalid service request format.
i Variable :
Register The value of the register.®)
Contents

www.marking-machines.net

Nt g 4

Marking Machines

Write_Multiple _Register Instance Service

Table: Service Parameters

Name Type | Description

Start Register| DINT
Number The number of the first register to be written. Must be less

than End Register Number.

End Register| DINT) .)
Number The number of the first register to be written. Must be

greater than Start Register Number. ol

i Variable . :

New Register The new register values to be written.
Number
Table: Service Response Data : v""'_'“l
Name Type| Description -

The operation completed successfull N

. — =i/
Status The operation could not be performed because of invalid register 7y o
DINT| 1 =
Code numbers. —
5 Invalid service request format.

(1) The values that are read and written to registers have the size specified by the Register Size attribute for that instance. For instance 0x01

(Integer Registers) and instance 0x02 (Double Registers) the values are 32 bits wide.
(2) When reading and writing a series of registers, the values are specified in order, end-to-end.

(3) This data is not returned unless the status code is zero (the operation completed successfully). . =

www.marking-machines.net

Behavior
register interface instance services allow the reading and writing of the controller's

Integer and Double Registers over EtherNet/IP. Data consistency is guaranteed

internally, so you can access these registers simultaneously through EtherNet/IP with
Multiple connections.

For compatibility with third-party PLC programming software, values read from and
written to the Double Registers are limited to 32-bit single-precision floating point
values. When reading a Double Register, the 64-bit double-precision floating point
value is rounded to a 32-bit single-precision floating point value when it is returned
through the Register

Interface Object. The I-Mark controller utilizes only the 32-bit Integer Registers for

control via EtherNet/IP

EXAMPLES
1. EtherNetIP request to write the value 1 (Start Marking) to Integer Register (298),
LA which is the Input Control Register:
i 1. Service: 0x33 (Write_Single_Register)
e 2. Class: 0x65 (Register Interface Obiject)
3. Instance: 0x01 (Instance 1 maps to Integer Registers)
4. Attribute: 0x01 (Normal Writing Method)
5. Request Data (Register Number, New Register Value): 0x00, 0x01, 0x00, 0x00,
0x0A, 0x00, 0x00, 0x00
- 6. Response Data: (Status Code: Invalid Register): 0x01, 0x00, 0x00, 0x00
: Note: Based on this Example, you can see we are using 2 words only for this packet
> instruction.

2. EtherNet/IP request to read the value of a Single Integer Register (299); which is
the output Control Register:

1. Service: 0x33 (Read_Single_Register)

2. Class: 0x65 (Register Interface Object)

3. Instance: 0x01 (Instance 1 maps to Integer Registers)

www.marking-machines.net

Nt g 4

Marking Machines

4. Attribute: 0x01 (Normal Writing Method)

5. Request Data (Integer Register Number): 0x12, 0x0B, 0x00, 0x00 v

6. Response Data (Status Code, Register Values): 0x00, 0x00, 0x00, 0x00, 0x02,
0x00, 0x00, 0x00

Note: Based on this Example the Controller is reporting back that it is currently Marking
(Value of 2)

For sending data to the controller to be marked in a placeholder, the following would be
the example

2. EtherNet/IP request to write the values 512 and 1024 to IntegerRegisters (300) and
(301): _
1. Service: 0x35 (Write_Multiple_Registers) _ " e
2. Class: 0x65 (Register Interface Object) .
3. Instance: 0x01 (Instance 1 maps to Integer Registers)
4. Attribute: 0x01 (Normal Writing Method) \]
5. Request Data (Start Register Number, End Register Number, Register Values): g\a‘{ﬁ
OxFF, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x02, 0x00, 0x00, 0x00, \" :
0x04, 0x00, 0X00 '
. Response Data: (Status Code): 0x00, 0x00, 0x00, 0x00

»

~

. Note that you need a single 32-bit word for each of the registers you are sending
data to within the I1-Mark Controller. Each Integer register is capable of 4
characters of information. So if you wanted the marking to print "ABCD" you
would only need to send to 1 register (300) with 1 word of data after converting
the ABCD ASCII into integer on the PLC side first.

www.marking-machines.net ;/ - \I?age 11

Setup I-Mark for EtherNet/IP Communication

Step 1: Controller Setup

The I-Mark controller will monitor the register 298 as our Input Control Register which
allows you to remotely control the marking machine. Likewise for our Output status,
the I-Mark controller (when configured for Ethernet/IP) will write an integer value to the
register 299 as our current status. What we have in our software is a screen which

allows you to map what functions you want to the different I/O bits within the program.

After you connect up to the controller (Home Tab [J Connect to Marking Machines), the
controller will show up under the Navigation pane on the lower left side of the software.
You can double click on controller listed in here or if you select it, the Ribbon menu
across the top will change to this controller specifically and you can select “Open
Marking Machine”. With this screen you can modify the parameters of the machine as
well as get the full status and live feed of what the machine is doing.

1. With the ribbon still highlighted on your controller page, there is an icon which looks
like a Green and Red arrow

opposing each other....

www.marking-machines.net

e S e

Marking Machines

This button will open up a dialog to allow you to configure the I/O’s of this controlle

Configure /OMap _—
|
IM_ID60
Inputs Outputs
Star NotUsed |v] Ready NotUsed v |
Type: |
Reset yP [NotUsed _»J| NotUsed =
Index NotUsed
Select0 Standard Not Used v
Modbus
Select 1 Not Used v Not Used v
Select2 Not Used v
Select3 Not Used v
Select4 Not Used v
oK | Cancel \

=

This dialog will allow you to map the function listed to the left with the desired I/O index

number and medium you would like to control it with. So for your configuration, you

are going to go through each of these items and change their “Type” to Ethernet/IP

and then make sure the index number below it is unique.

www.marking-machines.net

;/ll_i_ln\'?age 13

A basic setup should look like this chart here.

Inputs Outputs
Start EtherNetIP: 0 Binary 1 Ready EtherNetIP: 0
Reset EtherNetIP: 1 Binary 2 Marking EtherNetIP: 1
Select 1 EtherNetIP: 2 Binary 4 Completed EtherNetlIP: 2
Select 2 EtherNetIP: 3 Binary 8 Fault EtherNetIP: 3

Select 3 EtherNetIP: 4 Binary 16

Select 4 EtherNetlP: 5 Binary 32

Select 5 EtherNetIP: 6 Binary 64

» . 3. Once you have configured it to be this way, press OK to apply and save this
f' J configuration to the workspace.

www.marking-machines.net

e S e

Marking Machines

Step 2: Create a Layout with EtherNet/IP placeholder

1. Go back to the Home tab and click “Create New Layout”. It will ask you what
type of machine you want to create a layout for, if you're directly connected to the
machine there will only be 1 listed there (IM_ID60) just select this and click OK.

2. Now you can see the Layout which appears to look like a grid, this is the physical
marking window for the machine. To add a new text object which will print data
received from the PLC over Ethernet/IP, click on the “Layout” tab at the top and single

click on the button which says “Text”.

4

Text
e
This button will drop a text entity into the center of the layout which reads simply i
“Text”. You modify this entity by double clicking on it which opens up a new dialog for .
editing the text entity. Delete the sample “Text” in the top field and then look down at N ‘i
the different codes available for dynamic data. One of the codes is labeled L_%

“Placeholder Text Ty o

(Register/Ethernet/IP)”. You can click directly on this text or type in %p0 to the Text to
Mark field as shown here.

www.marking-machines.net ;‘/_ | '\I?age 15

Text Editor

Tex! to Mark:
%p0

Preview of Texl:
|Global Register Text 0]

Wild Cards
td Day of Month (2-Digit
% f M -'1

Week Codes
W Weak of the Year (Monday Star)
3 Weskofthe Year (Sunday Stad)

= Month (2-Dwgi)
An L-'.me

by Year (2-Dwi
8 Yeard-Diwgl)

o~

&%

-

15

(1 e >4

SiRlslE

-
"
-

e

i

n

al

-

l

o
0

-~

l

-
.-
"
"

|

-
-

-
=
-
"~

E

Hows (2 ’ Hg; 24 th-c Formatl
Hous (4- 4 H {
Hour |'12-HQ! [Ethg[

Moute (2-Digit)

Sacondsi2-Digi

AMPM

Eull Date Comi%dieY)
‘-‘mg-‘h‘ CE

e and Time (%x %X

Tm&ZQ ne

g...

Placeholder Tex (Modbys/Saria

Placehoider Tex (Register/EthematiP)

Shift Label

Value of C 18

Valye ot C Q“nrgrl P ghg wm Zemes
Asci Character ###

Dg rcent 5!9“! 2

Reference Text #2 (00-80)

Entar the téxd to mark in the box above. Use the
% codes 1o specify dynamic text options

Chek on a code 10 automatcally insert it into the
text box

Accept Cancet

Now press Accept to apply the change to the Text entity. The text within the layout

empty.

Step 3: Assign Layout to the controller.

will say “Global Register Text 0" as this is just a simulation to illustrate that we are

waiting for data to appear in order to mark it here because the register at this time is

Click directly on the layout to activate the layout tab on the ribbon,

Click on the button labeled "Assign to Machine"

Assign to

Machine~

i IM_ID60

www.marking-machines.net

Nt g 4

Marking Machines

Click on the machine listed below this button which corresponds to the name of the
machine you're currently working with. This will assign the currently layout to this v

machine so when a download occurs it will synchronize.

3. Save the Layout by going to the "Home" tab and select "Save Layout"

Save
Layout
Step 4: Set Layout as active layout for marking. e -

1. Click the tab on the toolbar named after the controller you are working on. On

this ribbon will be a button called "Layouts" click it

ne | e
Layouts . - _ . 2
Configure Layout BNW,W‘, — o
Clicking this button will open oo W g
up a dialog for you to assign 0 |Newisyous d S L \‘
o 1 I | Cancel | —\‘(A
layouts to a specific binary Newlayoud ___________| — iy o
2 v Apply i
assignment. Set the layout 3 ‘ n =
you just created as the <l = '
5 -
‘ 6 = |
7 -
| 8 | '
| g ['
10: | - -
| 1" - .
12 | |
13 | -
14 v
15 [=
16 | > -
[-

www.marking-machines.net

(] : [
N =

1. Navigate to the Setup and Control tab within the Controller Page.

Start Page IM_ID&60 '.‘-‘ev.!.ayout'.“ - ZPv_1___!D£3 | 'Ney.}f.ayou;B - IM_ID&0 v X
IM_ID60 - Not Found
Time on Cortroller
Not Connected
1 hark
Status and Control s iy

Home H ardw dalre

fj Se! Aclive

gf‘iw onnect Fri
- :‘~.'." nineits

| Choose Layout to Mark

New Layout3 v

Machine Actrity

Log Start na % Abort

Marking Machine Faull Status

Properbies
Connect To
Files Machine(s)
‘f Download
Diagnostics 4
Configurabon

2. Click on the Download button to save all of your Layouts and configuration to the
controllers memory.

3. After the progress completes, you may now disconnect from I-Mark.

www.marking-machines.net

R

Marking Machines

I-Mark Register Mapping

Input Control Register:

The I-Mark controller uses the Integer Register number 298 as the dedicated Input
Control Register for the marking machine. This register is checked once every 1ms
and executes the command mapped to the binary value(s) found in it. In the section
"I-Mark Register Mapping", we explained how to setup your input and output

functions for EtherNet/IP and their Binary Index.

Taking that example below is a chart illustrating a standard mapping of 1/O for

EtherNet/IP.
e
Inputs Outputs -

Start EtherNetIP: Binary 1 Ready EtherNetIP: "i

0 0 I
Reset EtherNetIP: Binary 2 Marking EtherNetIP: oy o

1 1 —— B
Select 1 | EtherNetIP: Binary 4 Completed EtherNetIP:

2 2
Select 2 | EtherNetlP: | Binary 8 Fault EtherNetIP:

3 3
Select 3 | EtherNetIP: | Binary 16

4
Select 4 | EtherNetlIP: Binary 32

5 X
Select 5 | EtherNetlP: Binary 64

6

To execute the function assigned to the binary index, perform a bitwise calculation and

enter the Sum of the binary values into the Input Control Register. The next time this

www.marking-machines.net

/A_F_i\\" age 19

er is polled by the controller for its value, the controller will execute the

mand(s) requested.

Example: To tell the controller to "Start" marking, write the value of 1 to the Input
Control Register. Then when the register is polled for its value, the controller will

initiate the marking sequence for the layout assigned to "0" in the previous section.

Example 2: If you have assigned multiple layouts to Select Number using the Layouts
dialog, put the value of 1 for "Start" command plus the value of 4 for the Select 1
command. So the Input Control Register will have the integer number 5 commanding

the marker to Start marking using Select 1.

When a new packet of data is sent to this register it will clear the previous out first
before writing the new value into it. It is a good practice to write the value of O into the
register after the marker has started/finished the command. If the register contains the
"Start" command, the marker will not return to home until the register is brought back
to 0 as it is trying to execute a "Start" each time the register is scanned. After you
have sent the packet of data to the Marker, it will provide a response back (See
Register Interface Object section), using this Response packet in the PLC as a trigger
to send a new MSG instruction containing the value of 0 to the I-Mark controllers Input

Control Register is recommended.

Output Control Register:
The Output Control Register will function in a similar manner to the Input Control

Register. The marking controller will provide a status in the form of a Bitwise
calculation which can be read by the PLC for current marker status. Like the Input
Control Register, the output will likewise be updated at a frequency of 1ms depending

on the current process being executed on the I-Mark Controller.

www.marking-machines.net

R

Marking Machines

Example: Using the chart above, when the marking controller is in a Ready state

register 299 will contain the value of v

1. Similarly if there is a fault within the marking controller, the value of 8 will be present
in the Output Control register.

Writing Marking Data to the I-Mark Controller:
The I-Mark controller will accept ASCII integer values in specified placeholder

registers to be used as marking data for your layout. These registers are global which
allows them to be used in multiple layouts without outside intervention. The I-Mark
memory utilized 32-bit integer registers to hold this marking data similar to the Input

and Output Control

Registers. Within the I-Mark software itself you can create an entity known as a :W
"Placeholder” which will utilize this '

local data to be marked within the Placeholder \ri
layout. The place holder is capable | ono | Register. 300-319 | Placeholder 0 =

of a maximum 80 characters of %pl Register. 320-339 Placeholder 1 E—

information with each character %p2 Register. 340-359 Placeholder 2

using 8 bits or 1 byte of data. %p3 | Register.360-379 | Placeholder 3

Remembering that our registers can %p4 | Register.380-399 | Placeholder 4

hold 32-bits of information, each %p5 | Register. 400-419 Placeholder 5

placeholder would occupy a total of %p6 | Register.420-439 | Placeholder 6

20 Integer Registers for holding that %p7 | Register.440-459 | Placeholder 7 <

data. The I-Mark software allocates %p8 | Register. 460-479 | Placeholder 8

these Integer Registers for the %p9 | Register.480-499 | Placeholder 9

assigned placeholders in the follow

locations.

www.marking-machines.net

Once the layout which utilizes any of these registers is executed, the I-Mark controller

will look at the value of the corresponding register and print what was found within it. If
a register is programmed within a layout but does not contain any data, there will be a
corresponding error message within the controller producing a Fault (Output Control

Register Bit 8).

www.marking-machines.net

e S e

Marking Machines

Establishing Communication with RSLogix 5000

This procedure provides an example of how to establish EtherNet/IP communication
between a PLC (programmed via RSLogix 5000) and an I-Mark controller. Note that
your setup procedure may differ depending on the particular PLC and version of
RSLogix that you are using. As always, the user must be certain that conditions are
safe before downloading changes to the PLC, and that any existing logic on the PLC is

backed up before it is overwritten.

Step 1: Create a new RSLogix 5000 project
1. Open RSLogix 5000.

2. Create a new project by going to File — New.

o
w
a. Select the appropriate controller type and revision.]
b. Specify a name for the controller and click OK.
o
. . B A
Step 2: Connect to the PLC using RSLogix 5000 — A’

1. After verifying that it is safe to do so, switch the PLC into programming mode.
2. In RSLogix 5000, select the communications path to the PLC.
a. Go to Communications — Who Active.

b. Highlight the PLC in the communications tree and click Go Online.

www.marking-machines.net ;‘/_ | '\I?age 23

w&l—t—w
'IaMark

V o Who Active

o aaotme []

- = workstation I Go Online I
+ &% Linx Gateways, Ethernet
= 2% AB_DF1-1, DF1 Upload.. |
< § |
Update Firmware.. ‘
Close I
Help |
Path AB_DF1-1\1 |
B
N\ =
=y c. You may be prompted that the open project (the one we just created) does not

match the project in the controller. We are going to download the new project to
the controller. This will erase the existing logic on the PLC. If this is OK, click

Download.

d. The online toolbar in RSLogix 5000 will indicate that the PLC is now online.

Offline . 7 RUN H Program J. ™ Program Mode
> & No Forces b, E g:T (I} No Forces ’. IE gm‘m“gf’(1:
: * att
No Edits 2 10 No Edits : o

AJA ™ 1/0 OK ll

e. Use the online toolbar to go offline.

Step 3: Assign IP addresses

Assign an IP address to the EtherNet/IP module on the PLC. The following example is
for a CompactLogix L43 controller with a 1768-ENBT/A EtherNet/IP module. A static IP
address is used for this example.

www.marking-machines.net

o —— .

Marking Machines f

In the controller organizer, right click on the bus that carries the EtherNet/IP modulgand.:

select New Module. v

+ L] Controller EthernetIP_Demo
v) Tasks
+ 21 Motion Groups
71 Add-On Instructions
+ 1 Data Types
1 Trends
£ 14O Configuration
;

+ 1769 Bus | 8 New Module...]

Choose the appropriate module and click OK.

M Select Module

Module Description Vendor o
~ - Communications
1768-CNBJA 1768 ControlNet Bridge Allen-Bradiey
1768-CNBRJA 1768 ControlNet Bridge, Redundant Media Allen-Bradiey Y
1768-ENBT/A 1768 10/100 Mbps Ethernet Bridge, Twisted-Pair Media L “
1763-EWEBJA 1768 10/100 Mbps Ethernet Bridge w/Enhanced Web Serv, ., Allen-Bradley ,___%
+ Motion L ——
Fd. | AddFavorte |
By Categary [By Vendor J Favorites]
[ok Concel | Hep |

Enter a name and description for the module, uncheck Open Module Properties and
click OK.

www.marking-machines.net ;/ | -\E’age 25

el

New Module

Type 1768-ENBT/A 1768 10/100 Mbps Ethemet Bndge,
Twisted-Pax Media
Vendor Allen-Bradiey
Patent: Local
Name: [eipM e Address / Host Name
'y .
Description: [EtherNet/IP module IP Address: |
" Host Name I
Slot; 11 ::j
Bevision l = Electronic Keying: | Compatible Keying B

[T Open Module Propesties | OK I Cancel Help

Go online, downloading offline changes as necessary.
In the controller organizer, right click on the EtherNet/IP module and select Properties.

Click on the Port Configuration tab in the module properties. Configure the IP address
and other network settings, and then click Set. Click OK to exit the module properties
window.

www.marking-machines.net

NQ— g £

Marking Machines

B Module Properties: Local:1 (1768-ENBT/A 1.1)

IP Address: | 192 .168 . 1 1 Domain Name: |
(Must Match IP Address on General Tab) Host Name: |
SubnetMask: | 255 .255 . 255 . O Select Port Speed | ~|
Gateway Address: I 0 0 0 0 Curtent Port Speed. 10 Mbps
Primary DNS
Server Addess] 0.0.0.0 Select Duplex |
Secondary DN !
St 0 .0 .0 .0 Current Duplexx Indeterminate
[Changes to Port Speed and '
[~ Enable Bootp Duplex require module reset) e
[T Enable DHCP [DHCP must be configured to retum & fixed address.)
[v Enable DNS
¥ AutoNegotiate Port Speed and Duplex Rgfiesh | st |

u‘m"‘
Status: Running | oK | Cancel | | Hep | "
1. Assign an IP address to the I-Mark controller. A static IP address is used for this Sl
example. L A
a. Controllers Properties Page. B "‘A

b. Locate the Data section within the properties.

c. Double click to specify the network settings and press ENTER.

Step 4: Verify EtherNet/IP communication
This step will guide you through the creation of a basic PLC program to test the e

EtherNet/IP communication with the IMark controller.
1. Go offline in RSLogix 5000.
2. In the controller organizer, right click on Controller <name> — Controller Tags and

select Edit Tags. a. Create the tags shown:

www.marking-machines.net ;/__ | \lfage 27

[] Data Type

+ eipMessage MESSAGE

+ vendorlD INT Decimal
sendMessage 'BOOL Decimal
sendMessageStorage BOOL Decmal

and Message (MSG).

In the controller organizer, right click on Tasks — MainTask — MainProgram —

MainRoutine and select Open. An empty ladder diagram will be displayed.

4. Add the following elements to the rung: Examine If Closed (XIC), One Shot (ONS)

e ? ? MSG
0 e — —{ONS }—— Message —(EN >——
e message Control IR . | <on)—
e —CER)—
e
e
(End)
&)
L\C"-— 5. Set the operands as follows:
a. Examine If Closed (XIC): sendMessage
b. One Shot (ONS): sendMessageStorage
c. Message (MSG): eipMessage
sendMessage sendMessageStorage MSG
0 J F {ons’} Message —(EN>—
Message Control eipMessage .. | <{DN)>—
- —(ER>—

(End)

www.marking-machines.net

N 4

Marking Machines

6. Click the ellipses button on the MSG instruction to configure the EtherNet/IP v

message. Configure the message as follows:
a. Configuration Tab
1 Service Code: E
2 Class: 1
3 Instance:l
4 Attribute: 1
5 Source Length: 0

6 Destination: vendorID

weet!
b. Communication Tab o\ J
1 Path: eipModule, 2, il ~
L A
192.168.1.2 __\“4

c. Click OK. —

7. Go online, downloading offline changes as necessary.

8. Once the project has been downloaded, switch the PLC into run or remote run
mode.

9. Right click on the XIC element in the ladder diagram and select Toggle Bit. This will
activate the rung and trigger the MSG block to send the EtherNet/IP message. i

www.marking-machines.net ;/__ | '\Eage 29

(End)

{ons)

B3 Copy Instruction

Edit Main Operand Description Ctri4+D

- HER—

Toggle Bit CrldT
Go To... Cul+G
Instruction Help Fl1

10. Once the DN output from the MSG block is active, return to the controller organizer,

right click on Controller <name> — Controller Tags and select Monitor Tags. The
vendorID tag should now have the value 935 (the EtherNet/IP vendor ID for CMT,

Inc). You have now verified the EtherNet/IP communication between the PLC and

(End)

controller.
sendMessage sendMessageSlorage MSG
—— | {ONS s Message CEN>—
Message Control eipMessage .. | (DN =
HER)—
Name & | Value "IStyle lDdaType I
+ epMessage s} MESSAGE
+ vendorlD 935 Decimal INT
sendMessage 1 Decimal BOOL
__| sendMessageStorage 1 Decimal BOOL

www.marking-machines.net

R

Marking Machines

Register Interface Example with RSLogix 5000

This example demonstrates how the EtherNet/IP™ Register Interface object can be

used to exchange arbitrary data between the PLC and I-Mark controller. Please read

the Establishing Communication with RSLogix 5000 document and verify the

EtherNet/IP™ communication with the controller before proceeding. It would also be

very beneficial to read the Register Interface Object topic in the controller help file

before continuing. You may create a new RSLogix 5000 project for this example

application or continue to build on an existing project. As always, the user must be pooe-~ -
certain that conditions are safe before downloading changes to the PLC, and that any

existing logic on the PLC is backed up before it is overwritten.

Overview : e
This example application demonstrates how the Register Interface object can be used i

to exchange data and "trigger" the execution of some process on the controller. It

involves some basic logic on the PLC (programmed via RSLogix 5000). Although this _“
example is fairly simplistic, the programming concepts employed are extensible to N o /A
much more complex applications. \« :

For this example, the I-Mark controller will execute a programmed Layout when
commanded by the PLC. The operands are specified on the PLC and passed to the
controller. The controller stores the result in its register space, and the PLC reads the
value back through the Register Interface.

Two EtherNet/IP messages are required for this application: one message to send the
operands and trigger the behavior on the controller, and a second message to read the
result back into the PLC. Since simple integers are needed to be passed to the
controller, we want to use the Write_Single_Registers service of the Register Interface
object for the first message. A single result value is read back into the PLC, so a

Read_Single_Register service may be used for the second message.

www.marking-machines.net ;,/ - \I.?age 31

Step 1: Programming the PLC side with RSLogix

1. Configure the necessary controller tags for the Write_Single_Register message.

a. Create controller tags named wsrServiceSend and wsrServiceSendStorage of
type BOOL,; these will be used in the ladder diagram to control when the

Write_Single_Register message is sent.

b. We need tags for the operands, a code to specify the requested operation, and a

flag to instruct the controller to perform the marking.
i. Create a controller tag named operandA

of type DINT. ii. Create a controller tag

named operandB of type DINT. iii.

Create a controller tag named operation

of type DINT.

(] |
&../.el. iv. Create a controller tag named executeFlag of type DINT.

. c. We need a tag to hold the service data for the Write_Single_Register service.
The service data for the

Write_Single_Register service are 1) the starting register number (32 bits), 2)
the new register values to write (32 bits). For our message, this is a total of two

32-bit words. Create a controller tag named wsrServiceData of type DINT[4].

d. For convenience, we can alias the other controller tags so they map directly into
the service data tag.

i. Set controller tag operandA as an alias
for wsrServiceData[2].

i. Set controller tag operandB as an alias
for wsrServiceData[3]. iii. Set controller
tag operation as an alias for

wsrServiceDatal[4].

www.marking-machines.net

Nt g 4

Marking Machines

iv. Set controller tag executeFlag as an alias for wsrServiceData[5].

e. The Write_Single_Register service returns a 32-bit status code. Create a v

controller tag named wmrReponseData of type DINT to hold this value.

f. Finally, a MESSAGE tag must be created; create a controller tag named
wsrServiceMessage of type MESSAGE.

2. Configure the necessary controller tags for the Read_Single_Register message.

a. Create controller tags named rsrServiceSend and rsrServiceSendStorage of type
BOOL,; these will be used in the ladder diagram to control when the

Read_Single_Register message is sent.

b. We need a tag for the result value that will be read back from the controller.

Create a controller tag named result of type DINT.

o
c. We need a tag to hold the service data for the Read_Single_Register service. N\
The service data for the ot
Read_Single_Register service consists only of the register number to be read o -
(32 bits). Create a controller tag named rsrServiceData of type DINT. L \‘
| | | | =/
d. The Read_Single_Register service returns a 32-bit status code followed by the \ =

contents of the register in another 32-bit register. Create a controller tag named

rsrReponseData of type DINT[2] to hold these values.

e. For convenience, we can alias the result controller tag so it maps directly into the
service response data tag. Set controller tag result as an alias for
rsrResponseData[1].

f. Finally, a MESSAGE tag must be created; create a controller tag named
rsrServiceMessage of type MESSAGE.

In summary:

www.marking-machines.net ;/ - \I?age 33

a. Add the following example rung to your ladder diagram:

wmrServiceSend wmrServiceSendStorage

Name & lAﬁas For I Data Type | Style]
| wmServiceSend BOOL Decimal
| wmServiceSendStorage BOOL Decimal
|+ opetand&, wirServiceD ataf2) DINT Decimal
|+ operandB _wmlServiceDalaB] DINT Decimal
|1+ opetation wmiServiceD ata{4) DINT Decimal
| +-executeFlag ‘wirServiceD ata|5) DINT Decimal
|+ wmiServiceD ata DINT[6] Decimal
___ |+ wmiResponseData DINT Decimal
| rsiSetviceSend BOOL Decimal
| rsiServiceSendStorage 800L Decimal
|+ resub rstfResponseDatal1] DINT Decimal
__| [+ rsrServiceData DINT Decimal
___|*+ 1sResponseD ata DINT[2] Decimal
___ |+ -wmiServiceMessage MESSAGE
___|#siServiceMessage MESSAGE
2

3. Create the logic to send the Write_Single_Register service to the controller:

1F I B!
0 4. {ONS }

MSG
Message ~(EN
Message Control wmrServiceMessage ... | (DN)—
CER)—

2. When wsrServiceSend is activated, the specified message is sent. We want this

to be our Write_Single_Register message, so configure the MSG block as

follows:

1. Configuration Tab

1. Service Code: 33 (Write_Single_Register)

2. Class: 65 (Register Interface Object)
3. Instance: 1 (IntegerRegisters)

4. Attribute: 1 (Normal Mode)

5. Source Element: wsrServiceData

6. Source Lenght: 16

www.marking-machines.net

N 4

Marking Machines

7. Destination: wsrResponseData .
2. Communication Tab v

1. Path: eipModule, 2, 192.168.1.2 (or the appropriate path to your
EtherNet/IP module)

4. Create the logic to send the Read_Single_Register service to the controller:

1. Add the following rung to your ladder diagram:

rarServiceSend rsrServiceSendStorage MSG
1 F {ons} Message -(EN
Message Control rsrServiceMessage ... | H(DN)—
-(ERD—

2. When rsrServiceSend is activated, the specified message is sent. We want this o
to be our Read_Single_Register message, so configure the MSG block as g\J

follows:

1. Configuration Tab L A

1. Service Code: 32 (Read_Single_Register) S

N

. Class: 65 (Register Interface Object)

w

. Instance: 1 (IntegerRegisters)

i

. Attribute: 1 (Normal Write Mode)

. Source Element: rsrServiceData

()]

6. Source Length: 4
7. Destination: rsrResponseData X
2. Communication Tab

1. Path: eipModule, 2, 192.168.1.2 (or the appropriate path to your
EtherNet/IP module)

www.marking-machines.net ;/__ | '\Eage 35

Step 2: Demonstration

a. Set a Marking Layout as assigned to 0 on the I-Mark controller.
b. Download the RSLogix 5000 project to the PLC. Switch the PLC into a run mode.

c. Set the register number values in the service data tags for the

Write_Single_Register and Read_Single_Register messages.

a. Set wsrServiceData[0] (starting register number for Write_Single_Register) to O.

b. SetrsrServiceData (register number for Read_Single Register) to 4.

d. Set values for the operandA and operandB tags. Set the value of the operation tag
to O for addition or any other value for multiplication. Set the value of the

executeFlag tag to 1.

e. Change the value of the wsrServiceSend tag from 0 to 1. This will energize its rung
A in the ladder diagram and cause the Write_Single_Register message to be sent to
[the controller.
= f. Check the value of the wsrResponseData tag. It should be zero, indicating that the
< operation completed successfully.
g. Change the value of the rsrServiceSend tag from O to 1. This will energize its rung in
the ladder diagram and cause the Read_Single Register message to be sent to the

controller.

h. Check the value of the rsrResponseData tag. rsrResponseData[0] should be zero,
s indicating that the operation completed successfully. result will contain the result
| value obtained from the controller.
> i. To send additional messages, change the value of the corresponding "ServiceSend"
tag to zero, wait for the
"ServiceSendStorage" tag to become zero, and then return the ServiceSend tag to
one. A message is only sent on a rising edge of the corresponding "ServiceSend"

signal.

www.marking-machines.net

